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1 INTRODUCTION 
In many engineering systems it is important to control the transmission of vibration from a source of 
disturbance to other devices or to the environment in order to prevent discomfort and loss of effi-
ciency. In particular, vibration of panels and shell structures may generate high levels of noise which 
could be a problem in many applications, mainly in transportation vehicles such as aircrafts, helicop-
ters, cars, trains, etc. The background of this study is the control of vibration of thin panels to avoid 
excessive vibration and sound radiation levels. Vibration and sound radiation control can be achieved 
with passive means such as mass damping and stiffness treatments applied on the radiating struc-
ture1. These methods have been proved to be efficient in the high audio frequency range. However, 
they tend to be less effective in the low audio frequency range, where the mechanical responses of 
structures are characterised by well–separated resonances. In order to control low frequency vibration 
and sound radiation, active control methods have been considered2. Frequently both passive and ac-
tive systems are used together to reduce transmitted vibration and radiated sound. 
 
Active control systems can be divided into two groups: feedforward and feedback control systems. 
Feedforward control systems require a reference signal well correlated to the disturbance to be 
controlled. Thus they normally provide good control effects for tonal disturbances that can be easily 
characterised far in advance3,4. For random disturbances, feedback control schemes should be util-
ized. These systems can provide good control performance regardless the type of disturbance to be 
controlled provided the sensor and actuator transducers are collocated and dual so that large feed-
back control gains can be implemented with no stability problems5,6. Feedback control systems for 
vibro-acoustic control can be classified in three categories: a) Multiple Input Multiple Output (MIMO) 
systems with fully coupled arrays of error sensor and actuators, b) Decentralised MIMO feedback 
control schemes with arrays of independent sensor–actuator pairs, and c) Single Input Single Out-
put (SISO) active feedback control schemes, using distributed sensor–actuator pairs. 
 
Fully coupled MIMO feedback systems are difficult to implement in practice, since a reliable model of 
the response functions between all sensors and actuators is required by the controller5,6. MIMO de-
centralised control systems have been shown to give good control performance which are compara-
ble to those that would be obtained from an ideal fully coupled MIMO feedback control system7,8. The 
implementation of decentralised MIMO system is much simpler than that of fully coupled systems, 
since simple SISO feedback loops need to be implemented. Elliott at al.9 have shown that, provided 
the sensor–actuator pairs are dual and collocated10,11, the decentralised MIMO system is bound to be 
stable if direct velocity control is implemented12. Therefore, the main issue of decentralised MIMO 
control is concerned with the design of collocated and dual sensor–actuator pairs.  
 
When decentralised velocity feedback loops are implemented in such a way as to generate active 
damping, both the frequency average vibration and sound radiation of the structure are reduced8,9, 
provided an optimal gain is implemented such that the damping action is maximised without pinning 
the structure at the control positions13. The optimally tuned active dampers reduce the amplitudes 
of the well separated low frequency resonances of the structure and thus the frequency averaged 
vibration and sound radiation at low frequencies.  
 
In principle, SISO feedback control systems using distributed sensor–actuator pairs specifically de-
signed to minimise the most efficient radiations modes of the radiating structure14 form the simplest 
and most convenient solution for active structural acoustic control. However, they normally require 
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strain transducers, such as piezoelectric transducers, which can not be easily used in matched pairs 
as sensors and actuators because feed-through effects that limit the stability of the control loop15.  
 
In conclusion, decentralised MIMO systems offer a good compromise between the fully coupled 
MIMO and the distributed transducers SISO control systems. The main issue of this strategy is the 
design of collocated and dual sensor actuator pairs. The purpose of this paper is to discuss the de-
sign of one feedback active control unit to be used in a decentralised MIMO control system ar-
ranged on a thin panel in order to control both its vibration and sound radiation. The feedback con-
trol unit consists of an inertial force actuator with a velocity sensor at its base. The study is focus-
sed on the stability and control performance properties of four feedback control functions which, 
using the velocity error signal implements5:  

1. Proportional Control for implementation of Velocity Feedback;  
2. Integral Control for implementation of Displacement Feedback;  
3. Derivative Control for implementation of Acceleration Feedback and  
4. PID Control (Proportional–Integral–Derivative Feedback Control). 

 
The following section presents the model problem considered in this paper. Then, in Sections 3 and 
4 the stability and control performance properties of the four control functions are assessed. 
 
 
2 MODEL PROBLEM  
As schematically shown in Figure 1, the study presented in this paper considers a simply supported 
plate with one feedback control unit which consists of an inertial actuator with an ideal velocity sen-
sor at its base. The inertial actuator is made of a magnet-coil linear motor that reacts off a proof 
mass mounted on a spring. As a result a point force actuation is generated at the base of the actua-
tor. Normally the coil is fixed to the base of the actuator and the magnet is used as the proof mass. 
The plate is assumed to be excited by a primary force fp. 
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Figure 1. Scheme of an inertial electro–dynamic actuator and velocity sensor control unit mounted 

on a simple supported plate 
 
The coil–magnet electrodynamic actuator is modelled in terms of a resistance Re and inductance Le 
for the coil. The actuation reactive force fc and back e.m.f. in the coil are given by the voice coil co-
efficient ψ 5. Two control arrangements are considered where the actuator is either current driven or 
voltage driven. According to Biot–Savart’s law, the reactive force fc generated by the coil–magnet 
system is directly proportional to the driving current for the current control case. In contrast, for the 
voltage control, the reactive force fc is proportional to the resultant voltage in the driving coil be-
cause of the back e.m.f. effect generated by the relative motion between the magnet and the coil. 
The details of the fully coupled model based on mechanical and electrical mobility/impedance func-
tions are given in reference16. 
 
The force fa transmitted to the base of the actuator is given by the product of the proof mass and its 
acceleration. Thus, as shown by the two plots in Figure 2, the spectrum of the transmitted force in-
creases monotonically with frequency up to a maximum value at the resonance frequency of the 
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mass-spring actuator system, which in the case under study is aproximately 10 Hz. At higher fre-
quencies, the transmitted force fa levels down to a value that is approximately constant and equal to 
the reactive force fc generated by the coil–magnet system16. 
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Figure 2: Force transmitted to the base structure per unit driving current (left) and voltage (right) 

 
A number of troughs are shown in correspondence to the low frequency resonances of the plate, 
which are due to the fact that at these resonance frequencies the plate produces little reaction to the 
actuator excitation. This effect is more pronounced for the voltage driven actuator. At frequencies be-
low the fundamental resonance frequency of the actuator, the transmitted force is out of the phase 
with the control signal while, at frequencies above the actuator resonance, it is in phase with the con-
trol signal. Above about 1 kHz, the transmitted force by the voltage driven actuator is characterised by 
an amplitude roll off and a constant phase lag which are due to the inductance of the driving coil. This 
tends to decrease the current in the driving coil, consequently lowering the actuation force.  
 
 
3 STABILITY ANALYSIS 
A critical problem for the implementation of feedback control systems is stability. To address this 
problem, several graphical techniques have been developed for Single Input Single Output control 
schemes. In this paper the Bode and Nyquist plots of the open loop sensor actuator response func-
tion are used with reference to the Nyquist stability criterion5,16,17.  
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Figure 3. Block diagram of the feedback control system implemented on the plate 

 
The response of the feedback control loop can be formulated in terms of a classic disturbance re-
jection control scheme as shown in Figure 1. Thus the response at the control position is given by: 
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where Ycp is the transfer function between the error sensor and the primary force, H(ω) is the con-
trol function and Gcc=H(ω)Ycc is the open loop frequency response function (FRF) between the error 
sensor and either the current or voltage control input. These response functions have been derived 
from the fully coupled model of the plate and electro–dynamic inertial actuator16. According to equa-
tion 1, if Re{Gcc}>0, then                  for any control gain and frequency. Thus, assuming the control 
function is a fixed gain, in order to have an unconditionally stable control system, the open loop 
sensor–actuator FRF Gcc must be real positive definite. In this case, the Nyquist plot of Gcc occu-
pies the right hand side quadrants as ω varies from –∞ to +∞ and thus the Nyquist instability point 
(-1+j0) is never encircled regardless of the control gain5,7,17. Also, the Bode plot of Gcc is minimum 
phase in the range between ±90°. In order to have a real positive open loop FRF Gcc, the sensor–
actuator transducers must be collocated and dual10,11.  
 
3.1 Proportional Control–Velocity feedback 

In order to implement negative velocity feedback12, the output signal from the velocity sensor is fed 
back to the actuator via a negative proportional control function; H(ω) = – g 
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Figure 4. Bode (top plots) and Nyquist plots (bottom plots) of the open loop sensor–actuator FRF 
when a Proportional feedback loop is used for current (left plots) and voltage (right plots) control 

 
The Bode plots in Figure 4 indicate that, for both current and voltage driven actuators, the phase of 
the open loop sensor–actuator FRF starts from +270° at low frequency, drops to +90° beyond the 
resonance of the actuator and then oscillates between +90° and –90° for the resonances of the plate. 
The first 180° phase drop, from 270° to 90°, is due to the inertial electro–dynamic actuator which, as 
shown in Figure 2, transmits a force fa to the plate which is 180° out of phase with the actuator driving 
signal below the actuator resonance frequency. In the voltage control case, at higher frequencies 

1/ <pc fw&
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above 1 KHz, the phase plot goes to values beyond –90° because of the coil inductance. This induc-
tance also decreases the amplitude of the open loop response function. 
 
The loci of the open loop sensor–actuator FRF shown in Figure 4 is characterised by one circle in the 
left hand side quadrants which is due to the resonance of the actuator, and many circles in the right 
hand side quadrants which are due to the resonances of the plate. Thus the control system is bound 
to be only conditionally stable since, for relatively high control gains, the circle on the left hand side 
due to the fundamental resonance of the actuator can enclose the Nyquist instability point. 
 
In conclusion in order to get a stable proportional velocity control loop with large control gains it is 
necessary to have a low-amplitude actuator resonance frequency. This condition is also important 
to minimise the control spillover effects at low frequencies around the resonance of the actuator. 
This low-amplitude resonance of the actuator is normally obtained by designing an actuator with 
natural frequency well below the first resonance of the structure. There is however an intrinsic limit 
to achieve this result since the stiffness of the actuator must be high enough to hold the mass with-
out a big static deflection; therefore a compromise must be found between a stiff enough spring to 
support the static weigh of the suspended mass and a soft enough spring to guarantee a low fun-
damental resonance frequency of the actuator18. Further improvements can be obtained by adding 
and internal velocity feedback loop to the actuator which generates relative active damping in the 
actuator that reduces the amplitude of its resonance19. Alternatively a very soft mount can be used 
in combination with an integral displacement feedback control loop, which acts as a self levelling 
system that limits the extent of the static displacement20. 
 
3.2 Integral Control–Displacement feedback 

In order to implement negative displacement feedback, the output signal from the velocity sensor is 
fed back to the actuator via a negative integral control function; H(ω) = – g / j ω 
 
The Bode plots in Figure 5 indicate that the phase of the open loop sensor–actuator FRF starts from 
+180°, drops to 0° at the resonance of the inertial actuator and then oscillates between 0 and –180° at 
higher frequencies above the first resonance of the plate. As discussed above, this is due to the ac-
tuator dynamics which, as shown in Figure 2, transmit to the plate a force fa which is 180° out of 
phase with the driving signal at frequencies below its fundamental resonance. In this control case, the 
amplitude of the open loop tends to decrease with frequency because of the integration 1/jω. For the 
voltage–driven inertial actuator this effect is even higher because of the coil inductance which intro-
duces an extra phase lag and amplitude drop at higher frequencies.  
 
The loci of the open loop sensor–actuator RFR shown in Figure 5 is characterised by one circle in 
the top side quadrants, which is due to the actuator–resonance, and many other circles on the bot-
tom side quadrants which are due to the resonance of the plate. Thus, compared to proportional 
control, the effect of integral control is to rotate in the clockwise direction the locus in the Nyquist 
plot and to reduce the size of the higher frequencies circles. This should improve the stability of the 
system since the circle due to the actuator resonance no longer lies exactly along the real negative 
axis. However, as shown by the magnified plot, for very low frequencies, this circle gets very close 
to the negative real axis. Although it never crosses the negative real axis, it may cause instabilities 
when small external perturbations slightly change the dynamics of the actuator. The circles due to 
the plate resonances are moved to the bottom half of the Nyquist plots so that they pass close to 
the Nyquist critical point at higher frequencies. In principle, when the actuator is current driven, the 
locus of the open loop sensor–actuator FRF does not cross the negative real axis and thus guaran-
tees an unconditionally stable system. However when the actuator is voltage driven, because of the 
extra phase shift introduced by the inductance effect of the driving coil; as shown by the magnified 
plot, it crosses the negative real axis so that stable control is guaranteed only for a limited range of 
feedback control gains.  
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Figure 5. Frequency response functions; Bode plots (tops plots) and Nyquist plots (bottoms plots) of 
the open loop sensor–actuator FRF when a Integral Control is used for current (left plots) and volt-

age (right plots) driven 
 
In general, the vicinity, of both top and bottom circles to the negative real axis makes integral feed-
back quite difficult to implement. Even small phase lead or lag effects due to external disturbances 
will cause the top and bottom circles to cross the negative real axis and thus only a limited range of 
control gains can be implemented in a stable control loop. Also, control spillover effects are likely to 
occur at those frequencies such that the Nyquist plot enters the circle of radius one centered at the 
critical point (-1+j0)5,6,17. 
 
3.3 Derivative Control–Acceleration feedback 

In order to implement negative acceleration feedback, the output signal from the velocity sensor is 
fed back to the actuator via a negative derivative control function; H(ω) = – j ω g  
 
In this case, the Bode plots in Figure 6 indicate that the phase of the open loop sensor–actuator FRF 
starts from +360° and drops to +180° at the resonance of the inertial actuator. This is because, as 
shown in Figure 2, the transmitted force fa flips sign with the control signal. At higher frequencies, 
above the first resonance of the plate, the phase oscillates between 180o and 0°. The implementation 
of a derivative control function produces a constant rise of the open loop sensor–actuator FRF with 
frequency. This effect is however mitigated by the coil inductance effect of the voltage driven system.  
 
The loci of the loop sensor–actuator FRF shown in Figure 6 are characterised by one circle on the 
bottom quadrants, which is due to the resonance of the actuator, and other circles for the reso-
nances of the plate on the top quadrants. Thus, in contrast to proportional control, the effect of de-
rivative control is to rotate the Nyquist plot in the anti-clockwise direction and to enlarge the higher 
frequencies circles. In principle this should also improve the stability of the system since the circle 
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due to the actuator resonance no longer lies exactly along the real negative axis. However, in this 
case, as shown by the magnified plot, the transition from the circle due to the actuator resonance 
and the circle of the first resonance of the plate crosses the negative real axis, so that the control 
loop is bound to be stable only for a limited range of feedback control gains. Also, control spillover 
is likely to occur at low frequencies since the locus enters the circle of radius one and centre (-
1+j0). For current driven actuators, the higher frequency part of the locus tends to form a sequence 
of circles along the imaginary axis so that the complex part rises monotonically. This effect is less 
pronounced when the actuator is voltage driven because of the coil inductance which tends to de-
crease the amplitude and to enhance the phase lag of the open loop FRF. In any case having a 
control system with such a large locus of the open-loop sensor-actuator FRF in the higher fre-
quency range could be a problem since high frequency phase lags introduced by the control circuit 
may lead to instabilities even for very small control gains.  
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Figure 6. Frequency response functions; Bode plots (tops plots) and Nyquist plots (bottoms plots) of 

the open loop sensor–actuator FRF when a Derivative Control is used for current (left plots) and 
voltage (right plots) driven 

 
3.4 PID Control  

The effects generated by a combination of negative displacement, negative velocity and negative 
acceleration feedback are also studied in this paper. In this case the output signal from the velocity 
control sensor is fed back to the control force actuator via a negative combination of Proportional–
Integral–Derivative functions: H(ω)= – g { kP + kI / jω + j ω kD }. The integral and derivative control 
parameters, kI and kD have been tuned with reference to the first resonance of the plate in such a 
way as that below this resonance the control is set to be integral controlled, at resonance to be pro-
portional controlled and above resonance to be derivative controlled. Also kD has been set to 1. 
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Figure 7. Frequency response functions; Bode plots (tops plots) and Nyquist plots (bottoms plots) of 
the open loop sensor–actuator FRF when a PID Control is used for current (left plots) and voltage 

(right plots) driven 
 
In this case, the Bode plots in Figure 7 indicate that the phase of the open loop sensor–actuator 
FRF starts from +180°, drops almost to 0°, oscillates between –90° and +90° once and then oscil-
lates between 0° and 180° above the first resonance of the plate. Thus, the integral control compo-
nent tends to produce a +90° phase lead effect at lower frequencies and the derivative control com-
ponent produces a -90° phase lag at higher frequencies above the first resonance of the plate. As 
found in the previous case, the derivative effect produce a constant increase of the amplitude of the 
open loop FRF with frequency, which is less pronounce with the voltage driven actuator because of 
the driving coil inductance effect. 
 
The loci of the loop sensor–actuator FRFs in Figure 7 indicates that, at low frequency below the first 
resonance of the plate, the integral control effect in the PID controller locates the locus–circle for 
the actuator resonance in the top quadrants as seen in Figure 5 for the purely integral control case 
(see magnified plot). Also, the proportional effect in the PID controller locates the locus–circle for 
the first resonance of the plate on the right hand side quadrants as typically happens with purely 
proportional control (see Figure 4). At higher frequencies, the derivative effect in the PID controller 
moves the circles to the top quadrants and produces the typical amplification effect proportional to 
frequency of purely derivative control. When the voltage–driven inertial actuator is used, then it is 
found that the typical higher frequencies phase lag and amplitude drop effects which is counterbal-
anced by the amplification effect of the derivative control. In summary this PID control function is 
bound to be unconditionally stable. At very low frequencies the locus-circle related to the actuator 
resonance can pass close to the Nyquist critical point when large control gains are implemented. 
This has two drawbacks since control spillover is likely to occur and also instability effects may be 
generated even by small disturbances at low frequencies. 
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4 CONTROL PERFORMANCES 
When distributed flexible systems are considered, the overall vibration of the plate can be assessed 
in terms of its time-averaged total kinetic energy which is given by16: 
 

aaH
pfMK

2

4
1

=  (2) 

 
where M  is the mass of the plate and a is a column vector with the modal amplitudes of the plate 
generated by the action of both primary excitation and control actuator when the feedback control 
loop is closed. The complete formulation to derive equation 2 can be found in reference16. 
 
Figure 8 shows the kinetic energy in the frequency range between 0 and 1 kHz for the two control 
arrangements and the four control functions. When there is no control, the spectrum of the kinetic 
energy is characterised by well separated resonances which are determined by the modes of the 
plate. It is interesting to note that there is nearly no peak for the actuator resonance at 10 Hz. 
 
Considering first the effect of proportional control, for both cases of current and voltage driven control, 
it is found that when the control gain raises the response at the first few resonance frequencies of the 
panel are decreased. This is due to the active damping effect of the control system which tends to 
reduce the resonant response of the lower order modes which are well coupled with the control actua-
tor. As expected, the resonance due to the actuator produces a control spillover effect so that, al-
though the control system is stable, the peak of the actuator resonance is amplified rather than low-
ered18. When very large control gains are implemented, the spectrum of the kinetic energy turns back 
to that in the case of no control except that the first few resonances of the panel are brought up in fre-
quency8,9. This is a well known phenomenon which is due to the fact that for very large feedback con-
trol gains the vibration of the plate is pinned at the control position and thus no more active damping is 
introduced in the plate itself. Thus, for very high control gains the response becomes that of a lightly 
damped plate with a constraint at the control position13. Comparing the effects produced by the cur-
rent and voltage driven control loops, the two plots in Figure 8 indicate that the control spillover effect 
at the fundamental resonance of the actuator is more pronounced for the voltage control system. This 
is probably due to the high frequency filtering effect on the open loop sensor-actuator FRF (see Fig-
ure 4) so that in order to generate the same active damping levels as with the current driven control 
system, much larger control gains must be implemented and thus much larger control spillover effects 
are generated at the fundamental resonance frequency. 
 
In summary, considering the thick solid lines of the two plots in Figure 9, the frequency averaged 
total kinetic energy monotonically decreases as the control gains raises from zero up to the optimal 
control gain where the maximum reduction of about 2 dB is obtained (note that this reduction is 
greater when several decentralised control units are used together). For higher gains, the curve 
have been interrupted because the system would go unstable values. 
 
The second row of plots in Figure 8 shows that the integral control, which implements active stiff-
ness, tends to move up the resonances of the panel. The control spillover effect is relatively smaller 
than that found with the proportional control system and occurs at much lower frequency than that 
when the feedback control loop is left open. Nevertheless comparing these results with those ob-
tained with the proportional control system, it is evident that with integral control there is a consis-
tent reduction of vibration only at frequencies below the first resonance of the panel where the re-
sponse of the panel is indeed controlled by stiffness. At higher frequencies there is a shift of the 
resonance frequencies of the panel low order modes which may result into vibration reductions or 
enhancements in narrow frequency bands. This trend is confirmed by the plots in Figures 9 (dashed 
lines) which highlights how the integral control produces smaller maximum reductions of the fre-
quency averaged kinetic energy of the panel although this maximum is obtained with smaller con-
trol gains. The dashed line in the plot for the voltage driven actuator in Figure 9 is interrupted be-
cause the closed loop would be unstable for higher control gains. 
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Figure 8. Total flexural kinetic energy of the plate when the control actuator is current and voltage 
driven (respectively left- and right-hand side plots) and Proportional, Integral, Derivative and PID 

control functions are implemented with a set or rising control gains 
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Figure 9. Normalised Frequency Averaged Total Kinetic Energy in the range 0 – 1 kHz as a function 

of the control gain in the current and voltage driven control system 
 
The third row of plots in Figure 8 shows the effect of derivative control that implement active mass. 
The overall result is a shift of the resonance frequencies of the panel which in this case are de-
creased. The dotted lines in Figure 9 show that in this case the reduction of the frequency averaged 
total kinetic energy is negligible for the current driven control system and very small for the voltage 
driven control system. This is due to the fact that the mass control system acts in a frequency range 
where the response of the panel is characterised by resonance responses which are determined by 
stiffness and mass controlled response respectively below and above the resonance frequency. Thus 
the active mass effect does not produce an effective reduction of the vibration in a wide frequency 
band. The dotted lines in Figure 9 are interrupted for relatively low control gains since, as highlighted 
in the previous section the control loop goes unstable for relatively small control gains. 
 
The bottom row in Figure 8 shows the effect of PID control. The integral component in the controller 
reduces the vibration of the panel at frequencies below the first resonance. The proportional com-
ponent is then effective at the first and second resonances of the plate. As found in the previous 
case the proportional component produces some control effects only in narrow band frequencies. 
Thus, the reduction of the total kinetic energy averaged in a range between 0 and 1 kHz is lower to 
that obtained with proportional control (dashed-dotted line). However, the reduction in the frequency 
range between 0 and 100 Hz is much higher. This type of control unit is specifically tuned to pro-
duce active damping on a relatively small frequency band. Thus, it may be possible that, by using 
an array of these control systems centred at different frequencies, a relatively higher control per-
formance is generated than by using an array with proportional feedback control loops.  
 
 

5 CONCLUSION 
This paper has presented a simulation study about the stability and control performance of a feed-
back control unit that is used to implement decentralised MIMO control in smart panels. The control 
unit consist of an inertial actuator with a velocity sensor at its base. Four control functions have 
been considered: a) Proportional, b) Integral c) Derivative and d) PID.  
 
The stability analysis has highlighted that when proportional control is implemented then the locus 
of the sensor–actuator open loop response function is characterised by one circle in the left hand 
side quadrants of the Nyquist plot, which is due to the actuator resonance, and many other circles 
in the right hand side quadrants which are due to the plate resonances. Thus the system is bound 
to be conditionally stable with gain margin dependent on the amplitude of the actuator resonance. 
Integral and Derivative control functions produce a rotation of 90o, respectively in the clockwise and 
in the anti-clockwise directions of the locus. In principle this should reduce the stability problem but 
the integration and derivative effects on the amplitude of the open loop response function produce 
some limitations on the maximum control gains that guarantee stability.  
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The control performance analysis has shown that, when the error sensor measures velocity, propor-
tional control implements active damping so that the response of the panel is reduced at the reso-
nance frequencies. Integral and derivative control produces active stiffness and active mass respec-
tively so that the resonance frequencies of the plate are moved up and down respectively and vibra-
tion reductions are obtained in the frequency bands where the response of the plate is stiffness and 
mass controlled respectively. The PID control scheme provides a combination of active stiffness, 
damping and mass effects which produces good control results in small frequency bands on which 
the PID function is tuned. 
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