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ABSTRACT 
This paper presents a simulation study on the downscaling of multiple electro-dynamic proof 
mass actuators for the implementation of decentralised velocity feedback control loops on a thin 
panel. The system is conceived to reduce the panel response at low resonance frequencies. In the 
first part of the paper, the principal downscaling laws of a single proof mass actuator are revised. 
In particular, the scaling laws are given for: a) the fundamental natural frequency, b) the 
damping factor, c) the static displacement, d) the actuation force fa and control force fc, and e) the 
maximum stroke Δwa. The second part of the paper presents a numerical study about the control 
performance produced by decentralised control systems with an increasing number of control 
units, which are scaled down in such a way as to keep the total base surface occupied by the 
actuators constant. This study shows that the control performance tends to rise as the number of 
control units is increased. However, this trend is reversed for large arrays of small scale actuators 
since the gain margin of the feedback loops tends to decrease with downscaling. 
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1. INTRODUCTION 
Theoretical studies have shown that decentralised velocity feedback control with collocated and 
dual velocity sensor and force actuator pairs effectively reduce the response at low frequency 
resonances of the structure where they are mounted1. Therefore, this type of control system is 
particularly suited to control broad band random disturbances at low audio frequencies2. 
However, the practical implementation of multiple feedback loops using electro-dynamic proof 
mass actuators with accelerometer sensors at their footprints is limited by stability issues3-5. In 
particular Bauman and Elliott4 have shown that the cross talking between neighbouring control 
units may lead to instability even if each control unit implements a control gain that ensures 
stability when the other units are turned off.  
 The aim of this paper is to investigate how the stability and control performance of a 
decentralised velocity feedback control system mounted on a plate varies with the downscaling 
of the electro-dynamic proof mass actuators. The downscaling study is carried out considering an 
increasingly denser array of smaller feedback control units so that the total area covered by the 
actuators remains constant as the size, and thus the base area, of the actuators is scaled down. 
 The paper is structured in three parts. Section 2 briefly describes the control system and the 
mathematical model used to perform the scaling study. Also, the stability and control 
performance of the benchmark control configuration with five decentralised control units 



 
 

considered in the study is revised. Section 3 introduces the principal downscaling laws for a 
single control actuator. Finally Section 4 presents the downscaling study considering an 
increasingly dense array of smaller control units. 

2. MODEL PROBLEM 
A. Control System 
Figure 1a shows a schematic of the simply supported plate with N velocity feedback control units 
considered in this study. The geometrical and material properties of the plate and benchmark 
control system, which has five control units arranged along the diagonals and at the centre of the 
panel (Case (a) in Section 4), are given in Table 1. The plate is excited by a plane acoustic wave 
with incident and lateral angles of 45o. In this way, the natural modes of the plate are evenly 
excited. Each control unit is formed by a proof mass electro-dynamic actuator with an idealised 
velocity sensor located in correspondence to the centre of the actuator base. As shown in 
Figure 1b, the actuator is formed by a cylindrical mass suspended on elastic springs and a coil, 
which is fixed to a thin base disc. The mass is formed by a cylindrical core magnet and an outer 
ferromagnetic ring, which produce a radial magnetic field perpendicular to the coil winding. In 
order to maximize the magnetic field that couples with the coil winding, the inner and outer air 
gaps between the coil and the suspended mass are kept to a minimum that avoid friction. 
 

 
Figure 1: (a) Plate with N velocity feedback loops using proof mass actuator and velocity sensor pairs. (b) 

Schematic of the coil-magnet proof mass actuator. 

Table 1: Geometry and physical parameters for the 
aluminium panel and benchmark control system. 

Parameter Value 
Dimensions 2mm  314414×=× yx ll  

Thickness mm  1=h  

Mass density 3mkg 0227=ρ  
Young’s modulus 210 mN  101.7 ×=E  

Poisson ratio 33.0=ν  
Damping loss factor 02.0=η  

Position control unit 1 mm  75 , 109 11 == cc yx  
Position control unit 2 mm  239 , 109 22 == cc yx  
Position control unit 3 mm  239 , 305 33 == cc yx  
Position control unit 4 mm  75 , 305 44 == cc yx  
Position control unit 5 mm  157 , 207 55 == cc yx   

Table 2: Geometry and physical parameters for the 
reference control actuator. 

Parameter Value 
Base disk diameter mm  4.38=bφ  

Base disk height mm  1=bh  
Base disk mass g  5.9=bM  

Proof mass diameter mm  8.22=aφ  
Proof mass height mm  11=ah  

Proof mass g  24=aM  
Springs Young modulus 23 mN  102.9 ×=SE  

Springs base area 2mm  8.84=sA  
Springs height 15  mmsh =  

Springs stiffness 108.4  N maK =  

Viscous damping coefficient -11.96  N msaC =  
Damping ratio 0.6aζ =  

Voice coil factor 2.6aψ =   



 
 

The axial motion of the suspended mass is guided by a stinger. The dimensions and physical 
properties of the reference actuator for the benchmark control arrangement are given in Table 2. 
The actuator proof mass aM  has been calculated as that of a solid cylinder with the outer 
dimensions (diameter aφ  and height ah ) of the actual proof mass and an equivalent smeared 
density aρ . Also, the stiffness of the actuator suspension aK  has been derived as that of three 
elastomeric springs (with Young’s modulus of elasticity sE ) in parallel with base area SA  and 
height Sh . The viscous damping coefficient aC  has been selected in such a way that the damping 
ratio aζ  is 0.6. Finally the voice coil coefficient has been derived from the relation6 wa Bl=ψ , 
assuming the actuator magnet produces a uniform magnetic flux density B  across the windings 
of the coil with total length exposed to the magnetic flux wl .  

B. Mathematical Model 
The steady state response of the panel with N control units due to a time harmonic primary 
acoustic wave excitation, with time dependence of the form ( ){ }Re exp j tω , where ω is the 

circular frequency and 1−=j , has been derived in terms of the time-averaged total flexural 
kinetic energy2: 
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where ρ  is the density of the material of the plate and xl , yl , h are respectively the dimensions 
and the thickness of the plate. The complex transverse velocity over the plate surface ),,( ωyxw& , 
has been derived from a fully coupled model of the panel with the feedback control units using 
electro-mechanical impedance/mobility functions. The air fluid loading on the panel has been 
considered negligible. Assuming the system is linear, the velocity ),,( ωyxw&  has been derived as 
the superposition of the response to the primary acoustic wave excitation and the response to the 
passive and active actions of the control units, which have been derived in terms of modal 
summations cast in the following matrix form: 
 

  )()(),()()(),(),,( ωωωωω ipcc pyxyxyxw aφfAφ +=&   , (2) 
 

where )(ωip  is the complex pressure of the incident acoustic wave, 

⎣ ⎦T
cNcc ff )()()( 1 ωωω L=f  is a column vector with the passive and active force effects 

exerted by the N control units, ⎣ ⎦),(),(),( 1 yxyxyx Rφφ L=φ  is a row vector with the first R 
modes of the panel at position ),( yx  and finally )(ωcA , )(ωpa  are respectively a [ ]NR×  
matrix with the complex modal excitations functions generated by the forces exerted by the 
control units and a [ ]1×R  vector with the complex modal excitations functions generated by the 
incident plane wave. The elements in the matrix )(ωcA  and vector )(ωpa  are given by the 
following two expressions 
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Figure 2: Block diagram of the multi-channel decentralised control system. 

 
In these equations p x yM hl lρ=  is the mass of the plate, η  is the loss factor, rω  and ),( cncnr yxφ , 

),( yxrφ  are respectively the r-th natural frequency and r-th mass-normalised natural modes of 
the plate at positions ),( cncn yx  and ),( yx , which have been taken from reference7 for a simply 
supported panel. Finally )cos()sin( φθox kk =  and )sin()sin( φθoy kk =  are the wave numbers in x 
and y directions of the incident acoustic plane wave with azimuthal and elevation angles of 

o45=φ  and o45=θ , where oo ck ω=  and smco 343=  are respectively the acoustic wave 
number and speed of sound in air. The factor 2 in Eq. (4) accounts for the blocked pressure 
doubling of the incident acoustic wave2. The closed loop velocities and forces produced by the 
decentralised control units can be modelled in terms of the block diagram shown in Figure 2. 
Thus the column vector with the complex phasors of the velocities at the control positions 

⎣ ⎦T
cNcc ww )()()( 1 ωωω &L&& =w  is given by 
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where )(ωccY  is a fully populated matrix of point and transfer mobility functions between the 
control positions and )(ωcpY  is a column vector with the mobility functions between the control 
positions and the primary wave excitation. The elements of )(ωccY  and )(ωcpY  are given by: 
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The vector with the passive and active forces exerted by the control units can be expressed as: 
 

  )()()( ωωω ccc wZf &−=   , (8) 
 

where )(ωcZ  is a diagonal matrix with the point impedances of the closed loop control units. 
Assuming the control actuators are current driven, these point impedances are given by8 
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where ωω jKCZ aaa +=)(  aa MjY ωω 1)( =  and bb MjY ωω 1)( =  are respectively the 
impedance of the suspension springs and the mobilities of the proof mass and base mass and g  
is the frequency independent control gain. Finally aK  and aC  are the stiffness and damping 
coefficient of the elastic springs and aM  and bM  are the proof mass and base mass respectively. 
After some mathematical manipulations the vectors with the control velocities and control forces 
are found to be given by 
 

( ) )()()()()( 1 ωωωωω icpcccc pYZYIw −+=&  ,  ( ) )()()()()()( 1 ωωωωωω icpccccc pYZYIZf −+−= . 
  (10,11) 
 

Thus after substitution of Eq. (11) into Eq. (2) and then the resulting Equation into Eq. (1), the 
total kinetic energy of the panel with the decentralised control units is derived as 
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where ( ) )()()()()( 1 ωωωωω cpccccc YZYIZQ −+−=  and the integrals of the natural modes over the 
surface area of the panel have resulted in the mass of the plate constant pM  since the natural 

modes are mass normalized so that 0
0 0
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C. Stability Analysis 
The practical implementation of a velocity feedback control loop with a proof mass electro-
dynamic actuator is characterised by a low frequency stability problem3,4,9. This is due to the fact 
that in order to produce a constant actuation force in phase with the driving signal, the actuator is 
designed with a low fundamental natural frequency below the first resonance of the structure 
under control. At low frequencies up to the fundamental resonance of the actuator, the control 
force produced by the actuator is out of phase with the driving signal. In other words the actuator 
control force is not dual to the error velocity measured at the base of the actuator10,11. Thus, if a 
negative velocity feedback loop is implemented, a positive velocity feedback is produced at low 
frequencies, which may lead to instability for high control gains. The maximum gain that would 
ensure stability can be derived from the Bode or Nyquist plots of the open loop sensor–actuator 
frequency response function (FRF), which are shown in Figure 3 for the control loop N. 1 of the 

 

 
Figure 3: Bode (a) and Nyquist (b) plots of the open loop sensor–actuator FRF of the control loop N 1. 



 
 

benchmark control configuration. The two plots highlight that, at frequencies below the first 
resonance of the panel, at 39 Hz, the FRF is real negative and would encircle the Nyquist 
stability point (-1, j0) when the gain is 6.641max =g . The Bode plot of the FRF shows that the 
fundamental resonance of the actuator, around 10 Hz, is highly damped. This is a desirable effect 
since it tends to reduce the amplitude of the real negative portion of the FRF and thus, as can be 
noted in the Nyquist plot, larger feedback control gains can be implemented.  
 Balas12 has shown that multiple decentralised velocity feedback control loops would be 
unconditionally stable if the sensor–actuator pairs are dual and collocated10,11. As discussed 
above, the control force produced by the proof mass electro-dynamic actuator is not dual to the 
error velocity and thus stability of multiple feedback loops is not guaranteed. Baumann and 
Elliott4 have also shown that when multiple feedback loops are implemented simultaneously, the 
maximum feedback control gains that ensure stability are lower than those that ensure stability of 
each control unit in isolation.   
 The stability of multiple channel feedback control loops is normally assessed with the 
generalised Nyquist stability criterion13, which states that, assuming both the plant and controller 
are individually stable, a multichannel feedback system is bound to be stable provided the locus 
of ( )cccZYI +det  does not encircle the instability point (0, j0) as ω varies from –∞ to +∞. 
Figure 4a shows that the locus of ( )cccZYI +det  for the system with five control units may 
encircle the instability point (0, j0) for large control gains. The maximum gain that would ensure 
stability has been derived by plotting the eigenvalues 51  , , λλ K  of cccZY  assuming 1=g . In fact 

( ) )1()1(det 51 λλ ggccc ++=+ LZYI  and thus the maximum feedback control gain can be 
derived from the locus of the largest eigenvalue of cccZY . In this case stability is ensured if the 
locus does not encircle the instability point (-1, j0). The plot with the five eigenvalues shown in 
Figure 4b indicates that the maximum control gain of the five channels feedback system is 

1.175max =g ; thus about 3.8 times smaller than that ensuring stability of one control unit. 
 
 

  
Figure 4: (a) Locus of det(I+YccZc). (b) Loci of the five eigenvalues of YccZc 

(a) (b) 



 
 

D. Control Performance 
The plot in Figure 5 shows the spectrum of the flexural kinetic energy per unit acoustic incident 
wave in a frequency range between 1 Hz and 1 kHz. The dashed line shows that, when the five 
control gains are gradually increased from zero the response of the panel tends to go down at low 
resonance frequencies as a result of the active damping action produced by the velocity feedback 
loops, which efficiently absorbs energy from the panel at these frequencies. The dotted line 
shows the response of the panel when the maximum stable control gain is implemented in the 
five control loops. In this case, around the fundamental resonance frequency of the proof mass 
actuators, the positive velocity feedback effect produced by the actuator dynamics effectively 
enhances the response so that a rather high and sharp peak is produced at 10 Hz. If a higher 
control gain was implemented, the system would go unstable and produce large vibrations at the 
fundamental resonance of the actuator. The faint line shows the best control performance 
averaged in the 1 Hz to 1 kHz frequency band, which for the benchmark control system with five 
actuators is produced by a control gain close to the maximum gain that ensures stability. Large 
kinetic energy reductions up to 30 dB are obtained for the first two resonances. Also, smaller 
reductions between 5 and 10 dB are produced at higher resonances in the frequency range under 
consideration. However, the positive feedback effect at the fundamental resonance frequency of 
the actuators has enhanced the response by about 10 dB around 10 Hz. 
 

 
Figure 5: Panel Kinetic Energy per unit sound pressure of the incident acoustic wave. No control (thick line), small 

feedback gains (dashed line), optimal control gain (faint line) very large control gain (dotted line). 

3. DOWNSCALING OF ONE CONTROL UNIT 
The downscaling laws for the main components and for the principal physical properties of the 
actuator have been derived in references14-17 and are summarised in Tables 3 and 4 using the 

][ nL  notation described by Madou15, where n  identifies the power of the linear dimension L . 
For those quantities that remain unchanged with scaling, a ][ 0L  scaling law is assigned. The 
scaling of the current density in the coil windings is taken from Trimmer16 for the case of 
constant temperature difference, ΔT, between the windings of the coil and the surrounding 
environment. Also, the scaling of the damping coefficient is taken from Peirs17 assuming squeeze 
film damping below the cut-off frequency cω  (below cω , damping force is higher than elastic 
force in squeezed films). The downscaling of the control force is derived at frequencies above 



 
 

the fundamental resonance frequency of the proof mass actuator where the feedback loop is 
designed to operate. Assuming a blocked base and 1<aζ , above the resonance frequency of the 
actuator the actuator control force is given by14: 
 
 aaaac iff ψωω =≈> )(   , (13) 
 
The downscaling of the actuator stroke is derived for the maximum stroke that occurs at the 
fundamental resonance frequency of the proof mass actuator. Also in this case, assuming a 
blocked base, the stroke of the actuator at the fundamental resonance frequency of the actuator is 
given by14: 
 
 aaaaaaa Miw ζωψω 2)( ≈Δ   , (14) 
 
The plots in Figure 6 show the downscaling laws of the electro-mechanical properties that 
directly influence the stability and control performance of a feedback loop with a proof mass 
electro-dynamic actuator. The downscaling laws are plotted with respect to the downscaling of 
the actuator base disc diameter, which is normalized to that of the reference actuator whose 
dimensions and physical properties are listed in Table 2. 
 

Table 3: Downscaling laws of the main components of the proof mass electro-dynamic actuator.  
Parameter Expression Downscaling 

Proof mass 42
mmma hM πφρ=  [ ]3LM a ∝  

Suspension stiffness sssa hAEK 3=  [ ]1LK a ∝  

Damping coefficient From ref.17 [ ]1LCa ∝  

Current density in the coil From ref.16 [ ]  1−∝ LJ a  

Current in the coil waa AJi =  [ ]  1Lia ∝  

Voice coil coefficient wa Bl=ψ  [ ]  1La ∝ψ  

 
Table 4: Downscaling laws of the principal physical properties of the proof mass electro-dynamic actuator.  

Parameter Expression Downscaling 

Fundamental natural frequency aaa MK=ω  [ ]  1−∝ Laω  

Damping ratio aaaa MKC 2=ζ  [ ]  1−∝ Laζ  

Static displacement aaa KgM=δ  [ ]  2La ∝δ  

Actuation force aaa if ψ−=  [ ]  2Lf a ∝  

Maximum stroke 
aaaaaa Miw ζωψω 2)( ≈Δ   * [ ]2 Lwa ∝Δ  

Control force 
aaac if ψωω ≈> )(   * [ ]2 Lf c ∝  

* mobility of base structure assumed equal to zero, i.e. blocked base 



 
 

 

    
Figure 6: Downscaling laws of (plot a) actuator fundamental natural frequency ωa, (dashed line) static displacement 

δa (dash-dotted line), damping ratio ζa (faint line) and (plot b) actuation and control forces fa and fc (faint line) 
maximum stroke Δwa (dotted line). 

 
The graphical representation of these downscaling laws suggests the following observations. 
1) The fundamental natural frequency of the actuator aω  rises linearly with the downscaling of 

the actuator. Therefore the actuator can be downscaled only to a size where the fundamental 
natural frequency approaches the first resonance frequency of the structure under control.  

2) The damping ratio aζ  also rises linearly as the size of the actuator is scaled down. This is a 
desirable effect since it tends to smooth the peak of the actuator fundamental resonance, 
which, as shown in the two plots of Figure 3, determines the gain margin of the feedback 
loop.  

3) The static displacement of the suspended mass aδ  decreases quadratically with the 
downscaling of the actuator. This is also a desirable effect since it reduces the sag of the 
suspended mass produced by quasi static displacements of the structure under control.  

4) For aωω >  the actuation and control forces, af  and cf , decrease quadratically as the size of 
the actuator is scaled down. According to Eq. (13) and the scaling laws in Table 3, this is due 
to the combination of two effects: first, the maximum current that can be fed to the actuator ai  

decreases linearly with the downscaling and, second, the electro-mechanical actuation 
coefficient aψ  also decreases linearly with the downscaling.  

5) The maximum stroke )( aaw ωΔ  also decreases quadratically with the downscaling of the 
actuator. Thus the dynamic stroke falls at a higher rate than that of the clearance allowed for 
the axial vibration of the suspended mass, which falls down linearly with the downscaling of 
the actuator. Although from the constructive point of view this is a desirable effect, as 
discussed in point 4) above, in practice it is associated with the reduction of the actuation and 
thus control force that can be generated by the actuator.  

In order to avoid the instability problem generated by the low frequency resonance of the 
actuator, an alternative suspension system should be used. For example, a non linear suspension 
system could be used, with small stiffness for the dynamic vibration range of the proof mass and 
a finite stiffness effect outside this range that provides end stops for unpredicted large 
oscillations of the proof mass and during pause condition of the feedback loop. However, 

(a) (b) 



 
 

Bauman and Elliott18 have shown that if the suspended mass was to hit the stiff end stops during 
operation, the feedback loop may become unstable.  
 In order to improve the control performance of the feedback loop, the use of an alternative 
actuation transducer that scales linearly with the downscaling of the actuator size would also be 
preferable. In practice linear downscaling of actuation forces is possible with micro-scale 
electrostatic actuators15-17. For instance the force produced by a parallel plate electrostatic 
actuator decreases linearly with the downscaling of the actuator provided the gap between the 
plates is of the order of m 100 μ , in which case the breakdown voltage is rather small and may be 
considered constant. Thus this type of actuator would produce small forces and work only with a 
micro-scale proof mass actuator whose natural frequency is bound to be much higher than the 
fundamental resonance frequency of the structure under control.  

3. DOWNSCALING OF MULTIPLE CONTROL UNITS 
The downscaling study of multiple control units has been carried out assuming an increasingly 
denser array of smaller control units so that the total area covered by the actuators base disc 
remains the same. As shown in Figure 7, six configurations with 5, 10, 15, 20, 25 and 30 control 
units have been considered (locations and size of the control units are drawn to scale). The 
principal dimensions and physical properties of the proof mass actuators used in these six 
configurations are summarised in Table 5. The plots in Figure 8 contrast the downscaling laws 
for the base area and mass of a single actuator and for the whole set of actuators. This plot 
highlights that, when the downscaling of the actuators is accompanied by an increasing number 
of control units such that as the actuators are downscaled, a) the total the area covered by the 
actuators disc remains constant, b) the total mass of the control units decreases linearly and c) the 
total control force remains constant. Thus, despite the total area covered by the multiple actuators 
remaining the same, the total seismic mass available to produce the control force goes down 
linearly rather than cubically as it would for a fixed number of control units. Also the total 
control force remains constant instead of falling down quadratically as it would for a fixed 
number of control units. 
 

Table 5: Principal geometrical and physical properties of the actuators used in the six control configurations. 

Parameter 5 Act. 10 Act. 15 Act. 20 Act. 25 Act. 30 Act. 
 (proof mass)  [mm]aφ  22.8 16.1 13.2 11.4 10.2 9.3 

  [mm]ah  11 7.8 6.3 5.5 4.9 4.5 
g][aM  24.7 8.8 4.7 3.1 2.2 1.7 

 (base)  [mm]bφ  38.4 27.1 22.2 19.2 17.2 15.7 
mm][bh  1 0.7 0.6 0.5 0.45 0.4 

g][bM  9.5 3.4 1.8 1.2 0.8 0.6 
[N/m]  aK  108.4 76.6 62.6 54.2 48.5 44.2 

][N/ms  -1
aC  1.9 1.4 1.1 0.98 0.9 0.8 

aζ  0.6 0.8 1.0 1.2 1.3 1.5 
[Hz]  af  10.5 14.9 18.3 21.1 23.6 25.8 
[N/A]  aψ  2.6 1.8 1.5 1.3 1.2 1.1 

 



 
 

 
Figure 7: Panels with 5 (a), 10 (b), 15 (c) 20 (d), 25 (e) and 30 (f) control units scaled down in such a way as the 

total base area is keep constant. Positions of control units are drawn to scale. 

 
 

   
Figure 8: Downscaling laws of base area (solid lines), mass (dotted line) and control force (dashed line) of one 

actuator (plot a) and N actuators (plot b). 
 

The performance of the multiple feedback control loops with increasingly smaller control units 
has been assessed by plotting the normalised‡ total kinetic energy integrated from 1 Hz to 1 kHz 
as a function of the feedback control gain g in the feedback loops. As shown in Figure 9, the 
plots have been derived for a wide range of control gains between 210−  and 410  regardless of the 
stability condition. All plots show that as the control gains are raised from zero, the kinetic 
energy of the panel tends to decrease up to an optimal control gain optg  (marked by a square) 
above which it tends to go up again. This phenomenon has been investigated in previous works1,3  

                                                 
‡ Normalised to the total kinetic energy when the feedback control loops are left open 

(a) (b) 

[L2]



 
 

 
Figure 9: Normalised Kinetic Energy averaged between 10 Hz and 1 kHz for the systems with 5, 10, 

15 20, 25, 30 control units. Circle markers: maximum stable gain; square markers: optimal control 
gain. Solid line: stable gains; dotted lines: unstable gains. 

 
which have shown that, when the optimal feedback control gain is exceeded, the active damping 
produced by the control units tends to diminish since the vibration at the control position is 
brought down by the controller. As a result, the response of the panel again tends to become 
lightly damped with sharp resonance frequencies, which occur at higher frequencies since the 
simply supported panel is now constrained at the control positions19. However, in practice, the 
control units can hardly implement the optimal control gains that would give the best control 
performance5. The stability limit for each configuration of the control units has been derived 
with reference to the generalized Nyquist stability criterion by plotting the locus of the largest 
eigenvalue of cccZY  as described in Section 2.C. The maximum stable control gains maxg  for 
each control configuration has been marked with a circle and the part of the curve for the 
fictitious reduction of Kinetic Energy that would be produced by unstable feedback loops has 
been represented with a dotted line. The six plots in Figure 9 show that, apart from the first 
configuration with five control units, the optimal and maximum stable control gains clearly 
diverge from each other. As a result also the optimal and maximum reductions of kinetic energy 
move away from each other. 



 
 

 
Figure 10: Maximum stable gains (dashed line) and 
optimal control gains (solid line) produced by actuators 
downscaling. Dotted lines obtained with line fitting. 

 
Figure 11: Reduction of kinetic energy for maximum 
stable gains (dashed line) and optimal control gains 
(solid line) produced by actuators downscaling. 

 
 These trends are exemplified in Figures 10 and 11. As the size of the control units is 
reduced and the number of control units is increased the optimal control gain tends to go up 
linearly. As a result, the optimal control performance tends to augment as the number of 
downscaled control units is increased although only up to the system with 15 units, which 
produces about double reduction of kinetic energy compared with that of the system with 5 
control units (from 4.6 dB to 9.6 dB). Systems with more than 15 control units show smaller 
reductions which do not fit into a smooth curve since the passive response of the panel can 
change significantly from one control configuration and another. 
 Nevertheless the plot in Figure 10 indicates that in practice the maximum control gain that 
ensures stability of the feedback control loops goes down linearly. As a result, the plot in 
Figure 11 indicates that the actual reduction of kinetic energy that can be generated by the 
maximum control gain is lower than that produced with the optima control gain. The best 
performance is still achieved by the system with 15 control units, which produces about 7 dB 
reduction. 

4. CONCLUSIONS 
This paper has presented a simulation study about the implementation of decentralised velocity 
feedback control with an increasing number of control units using smaller scale proof mass 
electro-dynamic actuators. The actuators have been progressively scaled down in such a way that 
the total area covered by the actuators remains constant. It has been shown that the down scaling 
of a proof mass electro-dynamic actuator produces positive (increment of internal damping and 
reduction of both static displacement and stroke) and negative (increment of the fundamental 
resonance frequency and reduction of actuation and control forces) effects for the 
implementation of velocity feedback control. The damping, static displacement and fundamental 
resonance frequency characteristics depend on the physical properties of the proof mass 
actuation system. The stroke, actuation force and control force depend on the physical properties 
of the actuation transducer reacting between the base disc and proof mass. As a result of these 
positive and negative effects, the implementation of increasingly denser arrays of smaller scale 
control units tends to produce higher control performance up to a system with 15 control units, 
which produces about 7 dB reduction compared to the 4.4 dB reduction of the reference system 



 
 

with 5 control units. This is an interesting result, particularly in view of the fact that the control 
system with 15 actuators is 1.75 times lighter than that with 5 actuators.  
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