

Design and implementation of a transmission suite in order to characterise the vibro-acoustic properties of lightweight structures

> Cristobal Gonzalez Diaz and Prof. Wim Desmet K.U.Leuven – Division PMA Belgium c.gonzalezdiaz@mech.kuleuven.be www.mech.kuleuven.be/pma

- Motivation and goal
- Construction and design considerations
- Shape optimization
- Walls thickness influence
- Front wall influence
- Final model description
- Conclusion and future work

- Design and build a "transmission suite" (acoustic research facility) to study lightweight structures:
 - Honey comb panels/Sandwichpanels
- The transmission suite has to be flexible:
 - Different shapes and dimensions/thickness of samples; should have different front walls
 - Provide both a mechanical and acoustic excitations
 - Airborne excitation
 - Structural-borne excitation
 - Measurements:
 - Sound Power Level (SPL) Sound Power Intensity
 - Transmission Loss (TL) & Insertion Loss (IL)

- Solid Masonry
 - > Heavy
 - Permanent
 - High degree of room sound isolation
- Prefabricated acoustic panel rooms
 - Can be removed and relocated/reinstalled at another site
 - High degree of sound transmission loss performance
 - More expensive than the solid masonry

Lightweight traditional building material

- Lower cost
- Constructed on situ

- Schroeder frequency; frequency above which the sound field is diffuse for a steady-state sound level
- Room dimensions; the spacing uniformity of the modal frequencies is governed by the ratio of room dimensions; preferred proportion: 1.25:1.5:1.75 {Blaszak},1.59:1.26:1 {SAE}

$$f_{n_x,n_y,n_z} = \frac{c}{2} \sqrt{\left(\frac{n_x}{L_x}\right)^2 + \left(\frac{n_y}{L_y}\right)^2 + \left(\frac{n_z}{L_z}\right)^2}$$

- **Optimization** of the shape in order to get the smoothest frequecy response (no-parallel walls)
- Mass-Size of the test rig

$$\Psi = \frac{\sum_{i=1}^{n-1} \varepsilon_i^2}{(n-1)\delta^2} + 1$$

The mean square of the deviation of the actual distances between subsequent modes from the mean value.

The higher the value of Ψ , the larger the fluctuations in the frequency spacing.

$$\Omega = \frac{\sum_{i=1}^{n-1} (|\varepsilon_i| - \Gamma)^2}{(n-1)\Gamma^2} , \Gamma = \sqrt{\Psi - 1}$$

The higher the value of Ω , the larger the gaps in the characteristics.

1.25:1.5:1.75 {Blaszak}, 1.59:1.26:1 {SAE}

Performed Analysis (Blaszak ratio)

Natural frequencies distribution

Comparison between displacement amplitude on two test panel points using:

- same test panel aluminum; 1mm; A2 size; clamped
- same reference case coupled cavity-panel system, considering infinitely rigid walls
- same test acoustic source (and in the same location)
- different wall thicknesses 10cm; 12cm; 14cm

Walls thickness – mean abs. amplitude error

	mean abs(DA), [0-500]Hz [dB]		
	P1	P2	
10cm	5	6	
12cm	5	6	
14cm	3	4	

Walls thickness effect – panel natural freq.

	Over the first 20 modes of the test panel [0-400Hz]				
	Dfn [Hz] <1Hz	Dfn [Hz] <2Hz			
10cm	8times	12times			
12cm	8times	12times			
14cm	13times	18times			

- Internal volume: 1.15m x 82cm x 98.4cm
- Wall thickness: 15cm
- Reinforced concrete: 2500kg/m^3 E=40GPa
- Total mass ~ 2.1Ton + front wall (aluminium wall)
- Several Test windows
 - A2, A3, A4 window size
 - Fully closed

Conclusion & Future work

- A optimum geometric proportion has been found;
 - Taking into account the eigenfrequencies
 - Absorption coefficient (α)
- The wall thickness and front wall influence has been studied
- A final model has been designed and ordered
- Experimental validation
- Clamped mechanisms

Acknowledgement

Marianna Vivolo

Performed Analysis

{Blaszak & SAE} ratios

Natural frequencies distribution

	Panel	Structure	Structure -	Acoustic	oupled Structure -		
		••••••	Panel		Plate		
	35.6539		35.6211		37.4634		
	58.3569		58.2878		57.5926		
	87.12		86.988		86.224875		
	97.2741		97.2804		96.816455		
	108.1463		107.9279		107.46288		
	144.9707		144.8309		144.55517		
				151.3813	151.60583		
	152.7912		152.7531		152.58681		
	169.1599		169.0142		169.58475		
				185.5101	185.19042		
	190.132		189.6923		190.27906		
	198.9342		198.7782		198.6321		
				212.0006	212.13338		
	226.1933		225.9862		225.85168		
	226.5034		226.8157		226.65679		
				240.5112	240.95988		
				260.4894	260.25305		
	272.2245		272.4606		272.48793		
	278.8863		278.4897		278.46766		
				281.6943	281.64799		
	285.814		285.3157		285.30034		
				305.9175	306.48068		
	307,9851		307,2438		307,10575		
KATHOLIEKE UNIVERSITEIT	7 th N 320.5771	ICRTN Sma Royal Institu	art Structures	Жеркзаер 1 ogy (КТН) - S	0 th 34Ac227A9 toc B201n2 5601	24	PN